
Modelling Publish/Subscribe Communication Systems: Towards a Formal
Approach∗

R. Baldoni, M. Contenti, S. Tucci Piergiovanni and A. Virgillito
Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”
Via Salaria 113, 00198, Roma, Italy

email: {baldoni,contenti,tucci,virgi}@dis.uniroma1.it

Abstract

Publish/subscribe is a widespread communication
paradigm for asynchronous messaging that naturally fits
the decoupled nature of distributed systems, allowing sim-
ple and effective development of distributed applications. In
this paper we propose a framework which includes a model
of a publish/subscribe computation and a few properties on
the computation, namely completeness and minimality, that
capture, from an application viewpoint, the expected behav-
ior of a publish/subscribe system with respect to the seman-
tic of the notification of the information. Finally, we provide
also a centralized implementation of publish/subscribe sys-
tem which produces minimal and complete computations.

1 Introduction

In the last years, a growing attention has been paid to the
publish/subscribe (pub/sub) communication paradigm as a
means for disseminating information through distributed
systems on wide-area networks. Participants to the commu-
nication can act as publishers, that submit information to the
system, and subscribers, that express their interest only in
specific types of information. A subscriber will then receive
only published information matching its interest. Main ad-
vantages of a pub/sub communication paradigm with re-
spect to a classical message passing are the following: the
interacting parties do not need to know each other, part-
ners do not need to be up at the same time, and the send-
ing/receipt does not block participants. Therefore it pro-
vides a many to many communication facility and a full
decoupling of the participants in space, time and flow that
matches the loosely coupled nature of distributed applica-
tions.

∗This work has been partially supported by a grant from EU IST Project
“EU-PUBLIC.COM” (#IST-2001-35217)

Since pub/sub has been largely recognized as an effective
approach for information diffusion, lots of pub/sub based
systems, both research contributions [CRW01, BCM+99,
SAB+00, PPPL+00] and commercial products [GKP99,
OPSS93], has been presented and are actually used in sev-
eral application contexts. From the research side, on one
hand, a lot of work has been done in this field from the soft-
ware engineering community, focusing on scalability, effi-
cient information delivery or efficient and expressive infor-
mation matching [ASS+99, OAA+00, CCC+01, FLPS00].
On the other hand, little has been done from the point of
view of the distributed system community to define, for ex-
ample, which are the communication semantics offered to
users with respect to the notification of an information by
a publish/subscribe communication system. The result is
that such semantics are often “non-deterministic” and very
difficult to compare. Let us note that “non-determinism”
in publish/subscribe systems assume a twofold meaning:
the first is related to the classical notion of sources of
non-determinism present in a distributed system, such as
failures, unpredictable message transfer delay, concurrent
execution of processes [RST91]. The second one is a
consequence of the decoupling in time typical of a pub-
lish/subscribe system. This decoupling can have two dis-
tinct forms:

1. an information item x can be published by a process
while an intended receiver is not running;

2. an information item x can be published by a process
while an intended receiver is running but is not inter-
ested to receive the information x yet.

In both cases, non-determinism can be reduced if x remains
available within the publish/subscribe system for a fixed
amount of time.

In this paper we propose a first attempt to model a
publish/subscribe communication system as a classical dis-
tributed computation (publish/subscribe computation). This

1



model first introduces a definition of availability of an in-
formation x in a publish/subscribe computation, then it pro-
vides some properties (namely, completeness and minimal-
ity) on the semantics of the notification of an information
x based on the notion of x’s availability. Informally, com-
pleteness states that each available information is delivered
to processes subscribed to that information. Minimality
states that an information is delivered at each process at
most once. These properties represents building blocks to
formalize classes of QoS with respect to the underlying ap-
plications. The paper also presents two simple implementa-
tions of a publish/subscribe communication subsystem that
produce minimal and complete computations. These imple-
mentations are both based on the notion of an intermediary
which mediates the interaction among processes. The inter-
mediary is presented first as a single process and then as a
network of distributed servers.

The paper is structured as follows: Section 2 gives an
overview of the related work in this area, Section 3 defines
the general computational model. Section 4 defines the con-
cepts and properties cited above, while in Section 5 the im-
plementations are presented and discussed. Section 6 con-
cludes the paper.

2 Related Work

Publish/subscribe communication systems can be classi-
fied in two main classes: topic-based (e.g. TIB/Rendezvous
[OPSS93]) and content-based (e.g. SIENA [CRW01] and
Gryphon [BCM+99]). In a topic-based system, processes
exchange information through a set of predefined subjects
(topics) which represents many-to-many logical channels.
Content-based systems are more flexible as subscriptions
are not related to specific topic but to specific information
content and each single information item actually can be
seen as a single dynamic logical channel. In the following
we first describe TIB/Rendezvous as an example of a topic-
based publish subscribe system, then we present Gryphon
and SIENA as two of the most relevant examples of content-
based systems.

TIB/Rendezvous is a commercial product supporting a
topic-based publish/subscribe interaction model. Processes
are supposed decoupled in space but coupled in time, since
information exchange guarantees are provided only for pro-
cesses up at the same time. In other words, TIB/Rendezvous
does not face the non-determinism due to point (1) (see In-
troduction) and reduces non-determinism due to point (2)
by using an additional caching mechanism in which the last
n messages for each subject are temporarily stored.

The SIENA project faces the design and implementation
of a scalable general-purpose content-based system. The re-
search efforts in SIENA has been focused in maximizing ex-
pressiveness in the selection mechanism offered to the end

user without sacrificing scalability in the delivery mecha-
nism. The result is a formalized structure of information
and subscriptions. Moreover, an efficient matching algo-
rithm and efficient mechanism for disseminating subscrip-
tions within the distributed architecture have been proposed.
Concerning the problem of non-determinism, SIENA does
not address it nor it provides delivery guarantees stronger
than “best effort”.

Similarly to SIENA, also in the Gryphon project effi-
cient matching dissemination have been investigated. As far
as the problem of non-determinism is concerned, Gryphon
provides a persistent form of availability of information
based on stable storage. Therefore, Gryphon actually elim-
inates the source of non-determinism proper of a pub-
lish/subscribe system.

3 A Framework for Publish/Subscribe

We consider a distributed system composed by a set of
processes Π = {p1, . . . , pn} that communicate by exchang-
ing information items. An information item belongs to a set
denoted by Inf . To simplify the presentation, we assume
the existence of a discrete global clock. This is a fictional
device: the processes do not have access to it. We take the
range T of the clock’s ticks to be the set of natural numbers.
In the following we present the behaviour of processes by
detailing the operations that they can perform. By spec-
ifying the semantic of operations, we analyze the overall
behaviour of the whole system.

3.1 Process Operations

Each process pi can execute the following opera-
tions: publishi(x), notifyi(x), subscribei(C),
unsubscribei(C), where x is an information item and a
C is a subscription. We drop the index of the process when-
ever not necessary. In our model an information item x is a
conjunction of pairs (attribute, value). A subscription C is
a predicate: if the information item x matches the subscrip-
tion, then C(x) ≡ >, otherwise C(x) ≡ ⊥.

Each process pi submits an information item x to other
processes by executing the publishi(x) operation. pi re-
ceives an information item x submitted by other processes
by executing an upcall to notifyi(x). A process pj is
notified only for information items that match its current
subscription Cj (Cj(x) ≡ >). A precise specification of in-
formation and subscriptions syntax and matching semantics
is out of the scope of this paper. Subscriptions are respec-
tively installed and removed at each process by executing
the subscribe and unsubscribe operations. Finally,
for sake of simplicity, we assume that two publish oper-
ations never publish the same information.

2



3.2 Local Computation

Each process executes a sequence of operations. Each
operation execution produces an event. Then, each pro-
cess pi produces a sequence of events. This sequence is
called local computation of process pi and is denoted by
hi. We denote as es

i the event produced by process pi at
time s ∈ T . In particular we denote the events produced
by the execution of publishi(x), notifyi(x),
subscribei(C), unsubscribei(C) at process pi as
pubi(x), nfyi(x), subi(C), usubi(C) respectively. Not all the
possible event patterns can belong to a local computation of
a publish/subscribe system. In the following we give some
local property that has to be satisfied by a publish/subscribe
local computation.

When a process activates its subscription C, producing a
sub event at global time s, then it may or may not notify
the information item that matches the subscription. When
it wants to delete the subscription it produces a usub event.
For sake of simplicity we assume that a process producing a
usub event, has previously produced a sub event. Formally:

∀ et
i = usub(C) ⇒ ∃! es

i = sub(C) s.t. s <

t (LP1)

We also assume that after a subscription event sub, even-
tually there will be the corresponding unsubscription event
usub in hi. Formally:

∀ es
i = sub(C) ∈ hi ⇒ ∃! et

i = usub(C) s.t.
s < t (LP2).

Any two successive events es
i , e

u
i ∈ hi (s < u), such

that es
i = sub(C) and eu

i = usub(C) define a subscription
interval of pi for a subscription C, denoted by Si(C). Then
it includes all events et

i s.t. s ≤ t ≤ u.
Without loss of generality we assume that each process

can have only one active subscription at a time. This im-
plies that there cannot be overlapped subscription intervals
at each process. Formally:

∀et
i ∈ Si(C) = [es

i , . . . , e
u
i ] s.t.

t 6= s ⇒ et
i 6= sub(C′) (LP3)

Finally, in order to preserve the correct semantics of the
notify operation, a notification event can be generated
only after a subscription event that matches the notified in-
formation and before the corresponding unsubscribe event.
(i.e. a notify event falls only in matching subscription inter-
vals). Formally:

∀e = nfy(x) ∈ hi ⇒ nfy(x) ∈ Si(C) s.t. C(x) = >
(LP4)

pi

subscribe event publish event notify eventunsubscribe event
t

Figure 1. A local computation

Let us remark that a publish event can fall at any place of
a local computation regardless of the subscription intervals.

Finally, let us introduce the notion of legal local com-
putation. A local computation is legal if it satisfies (LP1),
(LP2), (LP3), and (LP4). Figure 1 shows an example of a
legal local computation.

4 Basic Properties of a Publish/Subscribe
Communication System

In this section we provide the notion of information
availability of an information item which is central in
the context of a publish/subscribe communication sys-
tem. Then we provide two global properties on a pub-
lish/subscribe distributed computation that express the guar-
antees on delivery of available published information to all
matching subscribers. These properties could be used as
basic building blocks for defining classes of QoS in a pub-
lish/subscribe system.

4.1 Information Availability

A process pi publishes an information item x, produc-
ing a pubi(x) event, at a given time. We consider an avail-
able information item, one that can be delivered to match-
ing subscribers. Obviously, an information item is available
for interested subscribers only after it has been published.
However, in a distributed system not all processes may have
the same view of published information items, i.e. x is not
available to all processes at the same time.

We model the availability of an information item by
defining a boolean predicate AVAILi(x) that is equal to >
when the information item x is available for the process pi.
In this case, for the assumptions in Section 3.2, any sub-
scription interval that matches the information item x has to
contain the nfy(x) event.

Delivery guarantees of a publish/subscribe system are
strictly related to information availability. Ideally as soon
as an information item is published it should be available for
interested subscribers. The reactivity of the system to make
an information item available is related to the underlying
communication subsystem. To clarify this point, consider a
trivial publish/subscribe system in which a publisher sends
an information item to all other processes and then each pro-
cess notifies the received item only if a current subscription
matches it. In this case the information item is available to
a subscriber when the subscriber receives it.

3



We define an availability interval for a process pi, de-
noted Ai(x), as the time interval in which the published
information item x is available at pi. Before the publication
of information item x, AVAILi(x) is equal to ⊥ at each pro-
cess pi. The availability interval starts at the time in which
AVAILi switches from ⊥ to >. Once an information item x

is available at a process pi, and there is a subscription C such
that C(x) ≡ >, a notify event can be produced at pi. Let us
remark that the same information x could be notified to a
process pi more than once. An availability interval can be
upper bounded or unbounded. In the first case, the interval
ends at process pi when AVAILi switches from > to ⊥ (see
Figure 2). In the second case, all the published information
has to be stored in a persistent way.

p1

p2

p3

t∈T

pub(x)

AVAIL1(x)=

AVAIL2(x)=

AVAIL3(x)=

⊥

⊥

⊥

AAAA1(x)

AAAA2(x)

AAAA3(x)

AVAIL1(x)=⊥

AVAIL2(x)=⊥

AVAIL3(x)=⊥

Figure 2. Availability intervals

4.2 Global Properties of a Publish/Subscribe
Computation

In this Section we define two properties on a pub-
lish/subscribe computation that express reliability as guar-
anteed delivery of available published information to all
matching subscribers. A publish/subscribe computation is
the union of all local computations executed by processes
that belongs to Π. Considering a single subscriber pi, dif-
ferent levels of guarantees corresponds to how many times a
notify event for a published information x appears in its lo-
cal computation hi within its subscription intervals match-
ing x. Then, if at least one of such intervals contains
nfy(x), then we will say that the local computation of pi

is complete, as at least one subscription has been satisfied.
If at most one of such intervals contains nfy(x), then we
will say that the local computation is minimal, as there is no
more than one notification event for the same information
item. Formally, we can define the following properties:

Definition 1 A local computation hi is complete

iff ∀x ∃nfy(x) ∈ (Ai(x)
⋂

(Si(C) : C(x) =
>))

Definition 2 A local computation hi is minimal

if ∀x s.t. ∃ es
i = nfy(x), et

i = nfy′(x) , then
nfy(x) = nfy′(x).

In the following figures we shows three examples of lo-
cal computations. Figure 3 shows a local computation that
is complete but non-minimal. Figure 4 shows a local com-
putation that is minimal but non-complete. Figure 5 shows
a local computation that is both minimal and complete.

pi

sub(C�) nfy(x) nfy(x)usub(C ) sub(C' ) usub(C' )
AAAA i(x)

subscribe�event publish�event notify�eventunsubscribe�event

Figure 3. A complete and non-minimal local
computation

pi

sub(C ) nfy(x) usub(C ) sub(C') usub(C')
AAAA i(x) AAAA i(y)

subscribe�event publish�event notify�eventunsubscribe�event

Figure 4. A minimal and non-complete local
computation

pi

sub(C ) nfy(x) usub(C ) sub(C') usub(C')
AAAA i(x)

subscribe�event publish�event notify�eventunsubscribe�event

Figure 5. A minimal and complete local com-
putation

We now extend these two properties to publish/subcribe
computations, defining the following global properties:

Property 1 A publish/subscribe computation is complete if
hi is complete at each process pi.

Property 2 The publish/subscribe computation is minimal
if hi is minimal at each process pi.

A complete publish/subscribe computation ensures that
each available published information item is surely notified
to all the interested subscribers. However, it may be noti-
fied more than once. On the other hand, a minimal pub-
lish/subscribe computation ensures that each available pub-
lished information item may be notified only to a subset of
subscribers but each notified subscriber will be notified for
a same information item only once. If both completeness

4



and minimality are satisfied, the computation ensures that
each available information item will surely be notified to
each interested subscriber exactly once.

4.3 Availability Classes

The implementation of a pub/sub system strongly de-
pends on the criteria used for implementing the availabil-
ity predicate. Obviously, the more an information item is
available, the longer it is maintained in the system, i.e. the
more memory is needed for storing information. On the
other hand when the information item is no longer avail-
able, the pub/sub system can garbage-collect it. The dif-
ferent methods to “switch off” the AVAIL predicate drive
different behaviors of the system that may be used to fit
diverse types of applications. We now present three differ-
ent classes of information, depending on “when” the AVAIL
predicate is switched off. In particular, we consider an ex-
piration time ∆ for an information item x: x is no more
available (and can be garbage-collected by the system) after
a time ∆ is elapsed from the time it is considered available.
Then the three information classes, corresponding to three
approaches in setting ∆, are:

0-availability : each published information item x expires
as soon as it becomes available. Only processes whose
subscription matches x at the very moment of its pub-
lication are guaranteed for notification. This imple-
mentation scheme is very low demanding since it does
not require storing items. However, it is subjected to
runs between concurrent pub and sub events, i.e. a
subscriber may miss an information item x if its sub-
scription is even slightly delayed with respect to the
publication.

∆-availability : each published information item x expires
after ∆ > 0 from the instant it becomes available.
Garbage collection is performed by the pub/sub sys-
tem on all expired information items. This is more re-
silient to runs between the publisher and subscribers: a
subscriber whose subscription “is seen” in the system
after ∆ since x is available, can be still satisfied. On
the other hand high values for ∆ may provoke undesir-
able out-of-date notifications.

∞-availability : each published information item x re-
mains available in the pub/sub system for an indefi-
nitely long time. When a subscriber installs a new sub-
scription C it will receive all the previously published
and already available information items that match C.
This implementation style obviously requires an ideal
infinite memory to store all the information, since no
information item is ever garbage-collected.

This classification can be related to the non-deterministic
behavior deriving from the time decoupling between partic-
ipants, that is one peculiar features of the pub/sub paradigm.
In general, the more an information item remains available
in the system, the less non-determinism is experienced (for
example, the effect of runs between publications and sub-
scriptions is limited). Reduction of non-determinism in-
creases the probability that an intended receiver gets the in-
formation. If the information is stored in a persistent way,
non-determinism is completely removed and this probabil-
ity goes to one [TvS02]. Of course, this impacts on the
size of the memory necessary within the system. Then, we
can say that the three information classes feature decreas-
ing levels of non-determinism on the other hand requiring
increasing memory. However, we point out that this is not
the case where a single class can be identified in absolute as
better than the others, whereas each class is suited to meet
different application requirements. Hence we give exam-
ples of applications that may belong to each class.

An example of an application based on 0-available infor-
mation is a stock exchange system. Information items rep-
resent instant values of stock quotes, expiring very quickly.
Since the publication rate is high, missing notifications due
to runs poses no problem, since subscribers can get a new
information after a short time. An example of an applica-
tion based on ∆-available information is a daily news dif-
fusion system. Each information item represents the daily
issue of the news, having a lifetime of 1 day. Suppose is-
sues are published every morning at 3 A.M., an issue will
be notified also to processes submitting their subscription
during the day. An example of an application based on ∞-
available information is a digital library where catalog up-
dates are published as information items, kept available for
future subscribers. A new subscriber will receive all the
previous notifications in order to build its local copy of the
catalog.

5 Implementation Issues

The framework presented in previous sections abstracts
the execution of a general distributed system following the
pub/sub paradigm. The typical implementation model con-
siders a logically centralized engine which is responsible
for gathering the publications from publishers and forward
them to interested subscribers. We present two different im-
plementations of the engine, a centralized one and a sketch
of a distributed one, comparing how availability is managed
and the requirements for the completeness and minimality
properties to be satisfied.

We first extend the model given in Section 3. The cen-
tralized implementation model includes a central entity I
which we will refer to as the intermediary. The interme-
diary is composed by a set of processes S1, . . . , Sn, which

5



we assume not to crash. This simplifying assumption will
allow us in the context of this paper to concentrate on the
basic behavior of the system. All processes interacts by ex-
changing messages over an asynchronous distributed sys-
tem. Communication is reliable and FIFO: messages sent
by a process to a destination are eventually delivered to the
destination (message transfer delay is unpredictable but fi-
nite) in their sending order. We assume processes do not fail
and each process takes a finite time to execute a step.

5.1 The Intermediary

The role of the intermediary I is to propagate asyn-
chronously the information sent by publishers only to
the interested subscribers. The intermediary is ac-
cessed by processes through operations defined in its
interface: subscribe(C), unsubscribe(C) and
publish(x,∆). A process invokes the operation
subscribe(C) (unsubscribe(C)) to express (re-
voke) its interests in receiving information items match-
ing the subscription C. A process invokes the intermedi-
ary’s publish(x,∆) operation to transmit the informa-
tion item x, with availability interval ∆. ∆ is provided by
the publishing process as a parameter to the publish op-
eration to allow an application to define the desired avail-
ability for published information. I transmits the informa-
tion by invoking the notify(x) operation that must be
defined in the interface of the processes (Fig. 6).

P1 P2 Pn

notify

Publish()

su
bs

cr
ib

e

Subscribe()

Intermediary

un
su

bs
cr

ib
e

Unsubscribe()

pu
bl

is
h

Notify() Notify() Notify()

Figure 6. Publish/Subscribe Centralized Im-
plementation Model

5.2 Intermediary as a single process

In the following we consider a basic implementation of
the intermediary as a single process S1. Let us remark
that, despite its simplicity, this centralized implementation
has been exploited by some publish/subscribe system (e.g.
[SAB+00]). Figures 7 and 8 show the pseudo-code of op-
erations performed at a process and at the intermediary. In

INITIALIZATION
1 boolean subscribed = ⊥;

PROCEDURE SUBSCRIBE(subscription C)
1 send message SUB(C) to I;
2 wait until receive ACK;
3 subscribed = >; %event sub(C)%

PROCEDURE UNSUBSCRIBE(subscription C)
1 send message UNSUB(C) to I;
2 wait until receive ACK;
3 subscribed = ⊥; %event usub(C)%

UPON RECEIVING NFY(x)
1 if (subscribed)
2 then NOTIFY(x); %event nfy(x)%

PROCEDURE PUBLISH(information x, ∆)
1 send message PUB(x) to I; %event pub(x)%

Figure 7. A generic process

the following we give an explanation of the pseudo-code,
showing that it produces only complete and minimal com-
putations.

Generic Process The pseudo-code in Figure 7 highlights
the points when an event is generated in the local compu-
tation of a process p subsequently to an operation invoca-
tion in p. The code produces only legal computations at
each process. In particular, the SUB and UNSUB messages
are acknowledged by the intermediary in order to avoid
the possibility of a notify event occurring out of a match-
ing subscription interval. PUB operations does not require
acknowledgement because legality properties does not im-
poses any constraint on pub events within a computation.

Intermediary The intermediary maintains the following
data structures:

• M: a set of couples (C, pi) where C represents the cur-
rent subscription for pi.

• Inf : a set of couples (x, t) where x is an information
item expiring at time t (local time of the intermediary).

The pseudo-code is structured in four clauses activated
by the receipt of a message or when a predicate is verified.
The clauses are executed within a same program, then their
execution is mutually exclusive. The criteria for managing
the AVAILi predicate is the one presented in previous sec-
tion: an information item is kept available for all processes
and stored in Inf for a time ∆ since it has been received.
Referring to the model, this can be formally expressed say-
ing that AVAILi(x) is > for all i if and only if ∃(x, t) ∈ Inf .
(x, t) is stored in Inf when the publication message is re-
ceived by I (Line 14) and removed when the predicate stat-
ing its expiration is verified (Line 20).

6



INITIALIZATION
1 Set of (C, pi) M := ∅;
2 Set of (x, t) Inf := ∅;

BEGIN
1 while true do
2 when (receiving SUB(C)from pi) do
3 M := M∪ {(C, pi)};
4 send ACK to pi;
5 for each (x, t) ∈ Inf
6 if (C(x) = > ∧ x never been notified to pi)
7 then send NFY(x) to pi;
8
9 when (receiving UNSUB(C)from pi) do

10 M := M −{(C, pi)};
11 send ACK to pi;
12
13 when (receiving PUB(x ,∆)) do
14 Inf = Inf ∪ {(x, curr time + ∆)}; %AV AILi(x)=> ∀pi%

15 for each (C, p) ∈ M
16 if (C(x) = >)
17 then send NFY(x) to p;
18
19 when ((∃(x, t) ∈ Inf : t < curr time)) do
20 Inf = Inf − {(x, t)} %AV AILi(x)=⊥ ∀pi%

Figure 8. Intermediary

Computations produced at each process are complete:
when I receives a publication, it checks for all the pro-
cesses having a matching subscription in M and sends them
a notification (Line 15). Moreover, when I receives a new
subscription from a process p, it checks for all matching
available information items in Inf and notifies them to the
new subscriber (Lines 5-7). Also the minimality property is
satisfied by local computations: I also checks for each in-
formation item in Inf if it has been previously notified to p,
to avoid a process to receive a same information item more
than once (Line 6). This can be implemented by a process-
side filtering of information items or by a list maintaining
for each available information item the set of processes it
has already been sent to.

5.3 Intermediary as a Network of Servers

In general the intermediary can be implemented as a
set of distributed server processes S1, . . . , Sn, where each
server Si has the role of accepting subscriptions and no-
tifications and forwarding them within the system. This
approach is inherently more scalable and robust than the
centralized one, as we will discuss later in this this section,
thus it is adopted by most pub/sub systems. A process pi

requests to publish an information item or to subscribe for
a topic only to a single server. Each server then exposes
the same interface of the single-process intermediary pre-
sented in previous section and maintains a state related only
to subscriptions it manages.

The main issue to be addressed in this case is informa-
tion diffusion. This can be performed by exploiting net-

work level facilities such as IP Multicast [OAA+00] or by
constructing a network of application levels connections
among servers (overlay network [ZZJ+01, ZKJ01]). The
latter solution provides higher flexibility and is then consid-
ered more feasible for wide area environments: each server
can maintain connections only with a subset of the other
servers in the system, obtaining a lowest resource consump-
tion and higher adaptability to dynamic conditions. In the
context of this paper we consider an architecture based on
an overlay network. Each server has to maintain all the ac-
tive subscriptions of processes registered with it and all the
connections with other neighbors severs. Connected servers
form a network whose topology does not follow any partic-
ular structure (e.g. a hierarchy such as in TIBCO).

In the following we give a sketch of an algorithm for
information item diffusion, based on the construction of a
spanning tree over the server network rooted at the server
that has received the notification request. Tree construction
is performed by flooding information items from the source
node throughout the network. When a server receives a no-
tification request for an information item x from a client or
from another server it adds x to the set of available infor-
mation items and forwards it to all its neighbors. If a server
receives a same request for x more than once it discards it.
x is then notified to all the processes that have a matching
subscription. When x expires, the server removes it from
the set of available information items.

This algorithm can be subject to various optimizations
aimed at reducing the number of messages sent. For exam-
ple, in topic-based systems the tree can be built in advance
[RKCD01], because once a process is subscribed to a topic
it will receive all the messages related to that topic. This is
not possible in content-based systems, where receivers are
calculated on a per-message basis. One possible optimiza-
tion in such systems is the one proposed in SIENA, where
subscriptions are diffused in order to prune messages before
they reach parts of network with no interested subscribers.
For what concerns availability, in this case an information
item x is available at a process pi when it is received by the
server in which pi is registered. Obviously in this case, a
same information item will be available at different times
at each process and it is possible for a server to receive
an information item long after its publication. Exploiting
semantic dependence between information items allows to
identify out-of-date items and to prune them out in order to
save bandwidth [ORO00].

The completeness property is easily satisfied by our al-
gorithm, since, under the simplifying conditions we as-
sumed, it is sufficient that each information item eventu-
ally reaches all the servers. On the contrary, in presence
of faults, an acknowledgement mechanism is required that
highly increases algorithm complexity and network traffic.
In this scenario, the minimality property assumes a partic-

7



ular relevance in reducing the network traffic, by avoiding
as much as possible sending an information item more than
once. However, even in our basic distributed implementa-
tion, ensuring minimality is not as trivial as in the single-
process case: let us assume, as in the single-process inter-
mediary, that a ∆-available information item x is garbage-
collected by a server Si after a time ∆ from its reception.
Following the presented diffusion algorithm, x can be re-
ceived again by Si after it has expired but cannot be recog-
nized as “old” information. Then, in this distributed imple-
mentation,the garbage collection mechanism must maintain
also expired information items, but in an asynchronous en-
vironment it is not possible to decide for how long.

If channels are FIFO, it is sufficient to maintain at each
server a data structure that stores the sequence number of
the last information item received from each server. All
obsolete information items can be recognized and pruned.
In the general case when messages can be received out of
order this solution can lead to incorrect pruning of infor-
mation items that have not yet become available, violating
the completeness property. Then more sophisticated, and
resource-demanding, algorithms are required.

6 Conclusions and Future Work

In this paper we defined a formal computational model
for publish/subscribe systems that considers communica-
tion between processes at an abstract level. In our approach,
the formalization of the concept of information availabil-
ity plays a central role in defining the exact behaviour in
terms of information items actually delivered to subscribers
and in the representation of non-deterministic aspects of
the paradigm. Two sample implementations have been pre-
sented, discussing the protocol-level requirements for man-
aging availability and providing basic QoS properties, under
simplified conditions. In future work we will set the model
in more realistic environments, by designing scalable and
fault-tolerant protocols for message diffusion in large-scale
asynchronous systems.

References

[ASS+99] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and
T. D. Chandra. Matching Events in a Content-Based Sub-
scription System. In Proceedings of The Symposium on Prin-
ciples of Distributed Computing, pages 53–61, 1999.

[BCM+99] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R.E.
Strom, and D.C. Sturman. An Efficient Multicast Protocol for
Content-based Publish-Subscribe Systems. In Proceedings of
International Conference on Distributed Computing Systems,
1999.

[CCC+01] A. Campailla, S. Chaki, E. M. Clarke, S. Jha, and H. Veith.
Efficient filtering in publish-subscribe systems using binary
decision. In Proceedings of The International Conference on
Software Engineering, pages 443–452, 2001.

[CRW01] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and
Evaluation of a Wide-Area Notification Service. ACM Trans-
actions on Computer Systems, 3(19):332–383, Aug 2001.

[EFGK01] P.Th. Eugster, P. Felber, R. Guerraoui, and A.M. Kermar-
rec. The Many Faces of Publish/Subscribe. Technical Report
ID:2000104, EPFL, DSC, Jan 2001.

[FLPS00] F. Fabret, F. Llirbat, J. Pereira, and D. Shasha. Efficient
matching for content-based publish/subscribe systems. Tech-
nical report, INRIA, 2000.

[GKP99] R. E. Gruber, B. Krishnamurthy, and E. Panagosf. The archi-
tecture of the READY event notification service. In Proceed-
ings of The International Conference on Distributed Comput-
ing Systems, Workshop on Middleware, Austin, Texas, 1999.

[OAA+00] L. Opyrchal, M. Astley, J. S. Auerbach, G. Banavar, R. E.
Strom, and D. C. Sturman. Exploiting IP multicast in content-
based publish-subscribe systems. In Middleware, pages 185–
207, 2000.

[OPSS93] B. Oki, M. Pfluegel, A. Siegel, and D. Skeen. The Infor-
mation Bus - An Architecture for Extensive Distributed Sys-
tems. In Proceedings of the 1993 ACM Symposium on Oper-
ating Systems Principles, December 1993.

[ORO00] J. Orlando, L. Rodrigues, and R. Oliveira. Semantically reli-
able multicast protocols. In Proceedings of the 19th IEEE
Symposium on Reliable Distributed Systems (SRDS 2000),
Oct. 2000.

[PPPL+00] R. Preotiuc-Pietro, J. Pereira, F. Llirbat, F. Fabret, K. Ross,
and D. Shasha. Publish/Subscribe on the Web at Extreme
Speed. In Proc. of ACM SIGMOD Conf. on Management of
Data, Cairo, Egypt, 2000.

[RKCD01] A. I. T. Rowstron, A. Kermarrec, M. Castro, and P. Druschel.
SCRIBE: The design of a large-scale event notification in-
frastructure. In Networked Group Communication, pages 30–
43, 2001.

[RST91] M. Raynal, A. Schiper, and S. Toueg. On the Causal Ordering
Abstraction and a Simple Way to Implement it. Information
Processing Letters, 12(39):343–350, 1991.

[SAB+00] B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps.
Content Based Routing with Elvin4. In Proceedings of
AUUG2K, Canberra, Australia, June 2000.

[TvS02] A. Tanenbaum and S. van Steen. Distributed Systems: Prin-
ciples and Paradigms. Prentice-Hall, 2002.

[ZKJ01] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry:
An infrastructure for fault-tolerant wide-area location and
routing. Technical Report UCB/CSD-01-1141, UC Berkeley,
2001.

[ZZJ+01] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatow-
icz. Bayeux: An architecture for scalable and fault-tolerant
widearea data dissemination, 2001.

8


