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Matrix Completion & SGD
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LOSS(P,Q) =Y (Rj — PiQ)* + ...

» Stochastic Gradient Descent works by taking steps
proportional to the negative of the gradient of the LOSS.

» stochastic = P and Q are updated for each given training
case by a small step, toward the average gradient descent.
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Scalability

X Lengthy training stages;
X high computational costs;
X especially on large data sets;

X input data may not fit in main memory.

» goal = efficiently exploit computer cluster architectures.
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Distributed Asynchronous SGD
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Bulk Synchronous Processing Model
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Challenges 1/2

» 1. Load balance

> ensure that computing nodes are

] ] fed with the same load.

» 2. Minimize communication

> minimize vector replicas.




Challenges 2/2
» 3. Tune synchronization frequency

LEE]IT
w among computing nodes.

S
I I I I I I I » Current implementations synchronize

vector copies:

_—— > continuously during the epoch
(waste of resources);
> once after every epoch
I I I I I I I (slow convergence).

W » epoch = a single iteration over the ratings.




Contributions

v We mitigate the load imbalance by proposing an input
slicing solution based on graph partitioning algorithms;

v/ we show how to reduce the number of shared data by
properly leveraging known characteristics of the input dataset
(bipartite power-law nature);

v/ we show how to leverage the tradeoff between
communication cost and algorithm convergence rate by
tuning the frequency of the bulk synchronization phase
during the computation.
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Graph representation

» The rating matrix describes a bipartite graph.
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» Real data: skewed power-law degree distribution.




Input partitioner

» vertex-cut performs better than edge-cut in power-law graphs.

» Assumption: the input
data doesn't fit in
main memory.

» Streaming algorithm.

» Balanced k-way
vertex-cut graph
partitioning:
> minimize replicas;
> balance edge load.




Balanced Vertex-Cut Streaming Algorithms

» Hashing: pseudo-random edge assignment;
» Grid: shuffle and split the rating matrix in identical blocks;
» Greedy: [Gonzalez et al. 2012] and [Ahmed et al. 2013].

Bipartite Aware Greedy Algorithm

» Real word bipartite graphs are often significantly skewed: one
of the two sets is much bigger than the other.

» By perfectly splitting the bigger set it is possible to achieve a
smaller replication factor.

» GIP (Greedy - Item Partitioned)
» GUP (Greedy - User Partitioned)
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Evaluation: The Data Sets
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Experiments: Partitioning quality
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Synchronization frequency
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Evaluation: SSE and Communication cost
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Communication cost

» T = the training set » C = processing nodes
» U = users set » RF = replication factor
» | = items set » RFy = users’ RF
» V=UuUl » RF, = items’ RF
RE — |U|RFy + |l|RF,
Vi
f=1— CC=2(U|IRFy+|l|RF))=2|V|RF
T
G,



Conclusions

» three distinct contributions aimed at improving the efficiency
and scalability of ASGD:

1. we proposed an input slicing solution based on graph
partitioning approach that mitigates the load imbalance
among SGD instances (i.e. better scalability);

2. we further reduce the amount of shared data by exploiting
specific characteristics of the training dataset. This provides
lower communication costs during the algorithm execution
(i.e. better efficiency);

3. we introduced a synchronization frequency parameter driving
a tradeoff that can be accurately leveraged to further improve

the algorithm efficiency.
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Thank you!
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