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Matrix Completion & SGD
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I Stochastic Gradient Descent works by taking steps
proportional to the negative of the gradient of the LOSS.

I stochastic = P and Q are updated for each given training
case by a small step, toward the average gradient descent.
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Scalability

7 Lengthy training stages;

7 high computational costs;

7 especially on large data sets;

7 input data may not fit in main memory.

I goal = e�ciently exploit computer cluster architectures.

...
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Distributed Asynchronous SGD
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I R is splitted;

I vectors are
replicated;

I replicas
concurrently
updated;

I replicas deviate
inconsistently;

I synchronization.
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Bulk Synchronous Processing Model
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Challenges 1/2
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I 1. Load balance
B

ensure that computing nodes are

fed with the same load.

I 2. Minimize communication
B

minimize vector replicas.

6 of 18



Challenges 2/2

...

I 3. Tune synchronization frequency
among computing nodes.

I Current implementations synchronize
vector copies:
B

continuously during the epoch

(waste of resources);

B
once after every epoch

(slow convergence).

I
epoch = a single iteration over the ratings.
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Contributions

3 We mitigate the load imbalance by proposing an input
slicing solution based on graph partitioning algorithms;

3 we show how to reduce the number of shared data by
properly leveraging known characteristics of the input dataset
(bipartite power-law nature);

3 we show how to leverage the tradeo↵ between
communication cost and algorithm convergence rate by
tuning the frequency of the bulk synchronization phase
during the computation.
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Graph representation

I The rating matrix describes a bipartite graph.
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I Real data: skewed power-law degree distribution.
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Input partitioner

I vertex-cut performs better than edge-cut in power-law graphs.

I Assumption: the input
data doesn’t fit in
main memory.

I Streaming algorithm.

I Balanced k-way
vertex-cut graph
partitioning:
B

minimize replicas;

B
balance edge load.
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Balanced Vertex-Cut Streaming Algorithms

I Hashing: pseudo-random edge assignment;
I Grid: shu✏e and split the rating matrix in identical blocks;
I Greedy: [Gonzalez et al. 2012] and [Ahmed et al. 2013].

Bipartite Aware Greedy Algorithm
I Real word bipartite graphs are often significantly skewed: one
of the two sets is much bigger than the other.

I By perfectly splitting the bigger set it is possible to achieve a
smaller replication factor.

I GIP (Greedy - Item Partitioned)
I GUP (Greedy - User Partitioned)
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Evaluation: The Data Sets

Degree distributions:

100

101

102

103

104

100 101 102 103 104 105

n
u
m

b
e
r 

o
f 
ve

rt
ic

e
s

degree

items
users

MovieLens 10M

100

101

102

103

104

100 101 102 103 104 105

n
u
m

b
e
r 

o
f 
ve

rt
ic

e
s

degree

items
users

Netflix

12 of 18



Experiments: Partitioning quality
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Synchronization frequency
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I f = synchronization
frequency parameter
B

number of

synchronization steps

during an epoch.

I tradeo↵ between
communication cost and
convergence rate.
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Evaluation: SSE and Communication cost

MovieLens

1011

1012

1013

1014

1015

100 101 102 103

S
S

E

frequency

grid, |C|=32
greedy, |C|=32

GUP, |C|=32
grid, |C|=8

greedy, |C|=8
GUP, |C|=8

1

2

3

4

5

6

7

8

9

10

100 101 102 103 104 105

co
m

m
u
n
a
ca

tio
n
 c

o
st

 (
×
 1

0
7
)

frequency

hashing
grid

greedy
GUP

0.01
0.05

0.1

0.15

0.2

0.25

101

Zoom

Netflix

1013

1014

1015

1016

1017

100 101 102 103

S
S

E
frequency

grid, |C|=32
greedy, |C|=32

GUP, |C|=32
grid, |C|=8

greedy, |C|=8
GUP, |C|=8

1

2

3

4

5

6

7

8

9

10

100 101 102 103 104 105 106

co
m

m
u
n
a
ca

tio
n
 c

o
st

 (
×
 1

0
9
)

frequency

hashing
grid

greedy
GUP

0.01

0.05

0.1

0.15

0.2

101

Zoom

I SSE

between

ASGD

variants and

SGD curves

I CC

15 of 18



Communication cost

I T = the training set

I U = users set

I I = items set

I V = U [ I

I C = processing nodes

I RF = replication factor

I RFU = users’ RF

I RFI = items’ RF

RF =
|U |RFU + |I |RFI

|V |

f = 1 ! CC ⇡ 2(|U |RFU + |I |RFI ) = 2|V |RF

f =
|T |
|C | ! CC ⇡ |T |(RFU + RFI )
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Conclusions

I three distinct contributions aimed at improving the e�ciency
and scalability of ASGD:

1. we proposed an input slicing solution based on graph
partitioning approach that mitigates the load imbalance
among SGD instances (i.e. better scalability);

2. we further reduce the amount of shared data by exploiting
specific characteristics of the training dataset. This provides
lower communication costs during the algorithm execution
(i.e. better e�ciency);

3. we introduced a synchronization frequency parameter driving
a tradeo↵ that can be accurately leveraged to further improve
the algorithm e�ciency.
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Thank you!
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