
GASGD: Stochastic Gradient Descent for Distributed
Asynchronous Matrix Completion via Graph Partitioning

Fabio Petroni

Cyber Intelligence and information Security

CIS Sapienza

Department of Computer Control and
Management Engineering Antonio Ruberti,

Sapienza University of Rome -
petroni|querzoni@dis.uniroma1.it

Foster City, Silicon Valley
6th-10th October 2014

and Leonardo Querzoni

Matrix Completion & SGD

R Q
x

P

?
item vector
user vector

LOSS(P ,Q) =
X

(Rij � PiQj)
2 + ...

I Stochastic Gradient Descent works by taking steps
proportional to the negative of the gradient of the LOSS.

I stochastic = P and Q are updated for each given training
case by a small step, toward the average gradient descent.

2 of 18

Scalability

7 Lengthy training stages;

7 high computational costs;

7 especially on large data sets;

7 input data may not fit in main memory.

I goal = e�ciently exploit computer cluster architectures.

...

3 of 18

Distributed Asynchronous SGD

R

ĐŽŵƉƵƟŶŐ�ŶŽĚĞƐ

Q3

P3

Q4

P4

Q2

P2

Q1

P1

1 2 3 4

R1 R4

R3R2

I R is splitted;

I vectors are
replicated;

I replicas
concurrently
updated;

I replicas deviate
inconsistently;

I synchronization.

4 of 18

Bulk Synchronous Processing Model

ĐŽŵƉƵƟŶŐ�ŶŽĚĞƐ

ϭ͘�ůŽĐĂů
ĐŽŵƉƵƚĂƟŽŶ

Ϯ͘�ĐŽŵŵƵŶŝĐĂƟŽŶ

ϯ͘�ďĂƌƌŝĞƌ
ƐǇŶĐŚƌŽŶŝǌĂƟŽŶ

5 of 18

Challenges 1/2

R

1 2 3 4

R1 R4

R3R2

I 1. Load balance
B

ensure that computing nodes are

fed with the same load.

I 2. Minimize communication
B

minimize vector replicas.

6 of 18

Challenges 2/2

...

I 3. Tune synchronization frequency
among computing nodes.

I Current implementations synchronize
vector copies:
B

continuously during the epoch

(waste of resources);

B
once after every epoch

(slow convergence).

I
epoch = a single iteration over the ratings.

7 of 18

Contributions

3 We mitigate the load imbalance by proposing an input
slicing solution based on graph partitioning algorithms;

3 we show how to reduce the number of shared data by
properly leveraging known characteristics of the input dataset
(bipartite power-law nature);

3 we show how to leverage the tradeo↵ between
communication cost and algorithm convergence rate by
tuning the frequency of the bulk synchronization phase
during the computation.

8 of 18

Graph representation

I The rating matrix describes a bipartite graph.

x

x x

x

x

x

xx

x

x

x

x

R

I Real data: skewed power-law degree distribution.

9 of 18

Input partitioner

I vertex-cut performs better than edge-cut in power-law graphs.

I Assumption: the input
data doesn’t fit in
main memory.

I Streaming algorithm.

I Balanced k-way
vertex-cut graph
partitioning:
B

minimize replicas;

B
balance edge load.

10 of 18

Balanced Vertex-Cut Streaming Algorithms

I Hashing: pseudo-random edge assignment;
I Grid: shu✏e and split the rating matrix in identical blocks;
I Greedy: [Gonzalez et al. 2012] and [Ahmed et al. 2013].

Bipartite Aware Greedy Algorithm
I Real word bipartite graphs are often significantly skewed: one
of the two sets is much bigger than the other.

I By perfectly splitting the bigger set it is possible to achieve a
smaller replication factor.

I GIP (Greedy - Item Partitioned)
I GUP (Greedy - User Partitioned)

11 of 18

Evaluation: The Data Sets

Degree distributions:

100

101

102

103

104

100 101 102 103 104 105

n
u
m

b
e
r

o
f
ve

rt
ic

e
s

degree

items
users

MovieLens 10M

100

101

102

103

104

100 101 102 103 104 105

n
u
m

b
e
r

o
f
ve

rt
ic

e
s

degree

items
users

Netflix

12 of 18

Experiments: Partitioning quality

MovieLens

 1

 10

 100

8 16 32 64 128 256

re
p
lic

a
tio

n
 f
a
ct

o
r

partitions

hashing
grid
greedy

GIP
GUP

 1

 10

 100

8 16 32 64 128 256

lo
a

d
 s

ta
n

d
a

rd
 d

e
vi

a
tio

n
 (

%
)

partitions

hashing
grid
greedy

GIP
GUP

Netflix

 1

 10

 100

8 16 32 64 128 256
re

p
lic

a
tio

n
 f
a
ct

o
r

partitions

hashing
grid
greedy

GIP
GUP

 1

 10

 100

8 16 32 64 128 256

lo
a

d
 s

ta
n

d
a

rd
 d

e
vi

a
tio

n
 (

%
)

partitions

hashing
grid
greedy

GIP
GUP

I RF

Replication
Factor

I RSD

Relative
Standard
Deviation

13 of 18

Synchronization frequency

f = 1

f = 100

Netflix

5
6
7

10

20

30

40
50
60

 0 5 10 15 20 25 30

lo
ss

 (
×
 1

0
7
)

epoch

grid
greedy

GUP
centralized

5
6
7
8
9

10

20

30

40
50
60

 0 5 10 15 20 25 30

lo
ss

 (
×
 1

0
7
)

epoch

grid
greedy

GUP
centralized

I f = synchronization
frequency parameter
B

number of

synchronization steps

during an epoch.

I tradeo↵ between
communication cost and
convergence rate.

14 of 18

Evaluation: SSE and Communication cost

MovieLens

1011

1012

1013

1014

1015

100 101 102 103

S
S

E

frequency

grid, |C|=32
greedy, |C|=32

GUP, |C|=32
grid, |C|=8

greedy, |C|=8
GUP, |C|=8

1

2

3

4

5

6

7

8

9

10

100 101 102 103 104 105

co
m

m
u
n
a
ca

tio
n
 c

o
st

 (
×
 1

0
7
)

frequency

hashing
grid

greedy
GUP

0.01
0.05

0.1

0.15

0.2

0.25

101

Zoom

Netflix

1013

1014

1015

1016

1017

100 101 102 103

S
S

E
frequency

grid, |C|=32
greedy, |C|=32

GUP, |C|=32
grid, |C|=8

greedy, |C|=8
GUP, |C|=8

1

2

3

4

5

6

7

8

9

10

100 101 102 103 104 105 106

co
m

m
u
n
a
ca

tio
n
 c

o
st

 (
×
 1

0
9
)

frequency

hashing
grid

greedy
GUP

0.01

0.05

0.1

0.15

0.2

101

Zoom

I SSE

between

ASGD

variants and

SGD curves

I CC

15 of 18

Communication cost

I T = the training set

I U = users set

I I = items set

I V = U [I

I C = processing nodes

I RF = replication factor

I RFU = users’ RF

I RFI = items’ RF

RF =
|U |RFU + |I |RFI

|V |

f = 1 ! CC ⇡ 2(|U |RFU + |I |RFI) = 2|V |RF

f =
|T |
|C | ! CC ⇡ |T |(RFU + RFI)

16 of 18

Conclusions

I three distinct contributions aimed at improving the e�ciency
and scalability of ASGD:

1. we proposed an input slicing solution based on graph
partitioning approach that mitigates the load imbalance
among SGD instances (i.e. better scalability);

2. we further reduce the amount of shared data by exploiting
specific characteristics of the training dataset. This provides
lower communication costs during the algorithm execution
(i.e. better e�ciency);

3. we introduced a synchronization frequency parameter driving
a tradeo↵ that can be accurately leveraged to further improve
the algorithm e�ciency.

17 of 18

Thank you!

Questions?

Fabio Petroni

Rome, Italy

Current position:

PhD Student in Computer Engineering, Sapienza University of Rome

Research Areas:

Recommendation Systems, Collaborative Filtering, Distributed Systems

petroni@dis.uniroma1.it

21 of 21

